Sinoatrial node dysfunction induces cardiac arrhythmias in diabetic mice
نویسندگان
چکیده
BACKGROUND The aim of this study was to probe cardiac complications, including heart-rate control, in a mouse model of type-2 diabetes. Heart-rate development in diabetic patients is not straight forward: In general, patients with diabetes have faster heart rates compared to non-diabetic individuals, yet diabetic patients are frequently found among patients treated for slow heart rates. Hence, we hypothesized that sinoatrial node (SAN) dysfunction could contribute to our understanding of the mechanism behind this conundrum and the consequences thereof. METHODS Cardiac hemodynamic and electrophysiological characteristics were investigated in diabetic db/db and control db/+ mice. RESULTS We found improved contractile function and impaired filling dynamics of the heart in db/db mice, relative to db/+ controls. Electrophysiologically, we observed comparable heart rates in the two mouse groups, but SAN recovery time was prolonged in diabetic mice. Adrenoreceptor stimulation increased heart rate in all mice and elicited cardiac arrhythmias in db/db mice only. The arrhythmias emanated from the SAN and were characterized by large RR fluctuations. Moreover, nerve density was reduced in the SAN region. CONCLUSIONS Enhanced systolic function and reduced diastolic function indicates early ventricular remodeling in obese and diabetic mice. They have SAN dysfunction, and adrenoreceptor stimulation triggers cardiac arrhythmia originating in the SAN. Thus, dysfunction of the intrinsic cardiac pacemaker and remodeling of the autonomic nervous system may conspire to increase cardiac mortality in diabetic patients.
منابع مشابه
Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice
Diabetes mellitus (DM) encompasses a multitude of secondary disorders, including heart disease. One of the most frequent and potentially life threatening disorders of DM-induced heart disease is ventricular tachycardia (VT). Here we show that toll-like receptor 2 (TLR2) and NLRP3 inflammasome activation in cardiac macrophages mediate the production of IL-1β in DM mice. IL-1β causes prolongation...
متن کاملThe involvement of TRPC3 channels in sinoatrial arrhythmias
Atrial fibrillation (AF) is a significant contributor to cardiovascular morbidity and mortality. The currently available treatments are limited and AF continues to be a major clinical challenge. Clinical studies have shown that AF is frequently associated with dysfunction in the sino-atrial node (SAN). The association between AF and SAN dysfunction is probably related to the communication betwe...
متن کاملDeath, cardiac dysfunction, and arrhythmias are increased by calmodulin kinase II in calcineurin cardiomyopathy.
BACKGROUND Activation of cellular Ca2+ signaling molecules appears to be a fundamental step in the progression of cardiomyopathy and arrhythmias. Myocardial overexpression of the constitutively active Ca2+-dependent phosphatase calcineurin (CAN) causes severe cardiomyopathy marked by left ventricular (LV) dysfunction, arrhythmias, and increased mortality rate, but CAN antagonist drugs primarily...
متن کاملPhosphodiesterase 4D Deficiency in the Ryanodine-Receptor Complex Promotes Heart Failure and Arrhythmias
Phosphodiesterases (PDEs) regulate the local concentration of 3',5' cyclic adenosine monophosphate (cAMP) within cells. cAMP activates the cAMP-dependent protein kinase (PKA). In patients, PDE inhibitors have been linked to heart failure and cardiac arrhythmias, although the mechanisms are not understood. We show that PDE4D gene inactivation in mice results in a progressive cardiomyopathy, acce...
متن کاملAbnormal Ca(2+) release and catecholamine-induced arrhythmias in mitochondrial cardiomyopathy.
Mitochondrial dysfunction is implicated in numerous cardiac disorders. It has been assumed that the functional defects are directly related to a decreased rate of mitochondrial ATP production, but recent studies have challenged this idea. Here, we used mice with tissue-specific knockout of mitochondrial transcription factor A (Tfam) that leads to progressive cardiomyopathy. The role of changes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2014